

TAIWAN EPIDEMIOLOGY BULLETIN

2023年11月7日第39卷第21期

原著文章

新科技防疫: 全基因體定序技術於結核病群聚調查應用與實例

蕭聿昕、周如文^{*}

摘要

結核病是空氣傳播傳染病,阻斷傳播鏈,為結核病防治極重要的關鍵。全球結核病防治已進入基因體分析的世代,透過全基因體定序 (whole genome sequencing, WGS) 獲得結核菌群的單一核苷酸多型性 (single nucleotide polymorphism, SNP)資訊,可補強現有基因分型方法鑑別度的限制。緣此,為強化結核病聚集 (cluster)事件監測效能及釐清可能的指標個案,本文敘述利用 WGS 進行親緣性分析,並整合疫情調查資料,訂定適用於臺灣群聚調查的 SNP 判定 閾值: ≤ 5 SNPs 為明確流病相關,為必要調查對象; ≤ 15 SNPs 為極可能相關,視疫情可擴大疫調對象。並依資源及效益,建立群聚 (outbreak) 事件的實驗室檢驗流程:若由 MIRU-VNTR 初判為聚集且為特殊重要調查事件,則進行 WGS 分析。以提供疫情調查佐證,限縮所須疫調範圍,優化結核病聚集監測及群聚溯源,以落實精準結核病防疫的策略目標。

關鍵字:結核病、結核菌群、全基因體定序、聚集監測、群聚調查

前言

結核病是空氣傳播的傳染病,係全球十大致死因之一;通常為臺灣法定傳染病中,每年確定數及死亡數最多的傳染病。根據 2020 年世界衛生組織(World Health Organization, WHO)結核病年報,2019 年全球約 1,000 萬人罹患結核病,造成約 140 萬人死亡[1]。而臺灣 2019 年結核病新案數為 8,732 人,發生率每十萬人口 37 人,造成 546 人死亡[2]。然而,距離「消除結核 2035 第二期國家計畫」的 2025 年須達每十萬人口 25 人發生率的目標仍有不小落差。為有效降低結核病發生率,

衛生福利部疾病管制署檢驗及疫苗研製中心 投稿日期:2021年04月29日

通訊作者:周如文^{*} 接受日期: 2021 年 09 月 16 日

E-mail: rwj@cdc.gov.tw DOI: 10.6524/EB.202311_39(21).0001

世界衛生組織建議可採取三項主要策略:及早發現病人、提供適當治療及阻斷結核病傳播。其中,阻斷傳播鏈因為必須依賴高階實驗技術提供的實證,需要持續引用新科技,以精進防疫作為。

結核病防治相關檢驗,需要持續精進各項傳統檢驗方法,並建置高階新科技診斷工具,例如次世代定序(next generation sequencing, NGS)技術及檢測流程。運用 NGS 可執行致病原全基因體定序(whole genome sequencing, WGS)。1998 年,首次藉 WGS 技術成功解碼結核菌群的全基因體。隨著國際間逐步落實 WGS 於例行結核病的鑑定與抗藥性檢測,並利用 WGS 分析,精準判定結核病傳播的網絡。反觀,現行傳統結核病聚集監測,所使用的間隔寡核酸分型法(space oligonucleotide typing, spoligotyping)及結核菌群最佳化散置重複單元(Mycobacterial interspersed repetitive unit-variable number tandem repeat, MIRU-VNTR)分型法,僅能分析 1%的結核菌群全基因體[3],致使菌株間的鑑別程度受到限制,此可能造成與個案流行病學關聯無法吻合。至於 WGS 新科技,則可分析約 90%菌株的全基因體。

自 2010 年起,國際上逐漸運用 WGS 新技術,進行結核病傳播與聚集的調查研究[4]。藉由基因序列的單一核苷酸多型性(single nucleotide polymorphism, SNP)的改變,除可獲得不同菌株間基因上的 SNP 差異外,也可瞭解疾病傳播的空間方向性及時序性[5],進而追蹤到指標個案(index case)或者是超級傳播者(super spreader)。

至於結核病聚集(cluster)的判定依據,國際上採行以合適的 SNP 差異數作為切點閾值。例如:加拿大(SNP≤5)、澳洲(SNP≤10)與英國(SNP≤12)等國家,已利用 WGS 輔助結核病傳播調查,確認有助於掌握傳染來源及傳播途徑[6]。然而,因為結核菌株間 SNP 的差異數切點訂定是否合宜,強烈受到各國結核病盛行率、菌株世系(lineage)特性、抗藥性情況、宿主及環境等因素影響[7]。因此,至今全球尚未有判定結核病聚集的標準及共識。本研究為因應新科技防疫的趨勢及策略,針對一件由傳統基因分型方法判定的聚集,利用 WGS 親緣性分析及流行病學調查結果,嘗試訂定群聚(outbreak)判別的 SNP 差異數閾值,以提供公共衛生人員在調查個案間關聯性參考,協助確認感染源及阳斷疾病的傳播。

材料與方法

一、檢體菌株來源及檢體製備

分析由臨床實驗室送驗的結核菌群(*Mycobacterium tuberculosis* complex, MTBC)菌株。依照疾病管制署(以下簡稱疾管署)傳染病標準檢驗方法手冊規定[8],先再次鑑定結核菌群菌株,次培養於 BBLTM MGITTM Mycobacteria Growth Indicator Tube 培養基進行增菌,再次培養於含 p-nitrobenzoic acid (PNB)的 7H10 agar 及含 5%羊血的 BBLTM Columbia 瓊脂培養基,使用解剖顯微鏡檢確認為單一菌種。再將菌株經 80°C去活化處理 1 小時後,提供基因分型實驗用。

二、藥物敏感性試驗

(一) Middlebrook 7H11 瓊脂平板比例法

於生物安全第三級實驗室中,將新鮮培養的初代結核菌群,調製成濁度 McFarland 0.5–1.0 菌液後,稀釋接種至含抗生素的培養基。於 37°C、5% CO2 恆溫培養箱中培養 3 週後,判讀抗藥結果。測試藥物品項如下:isoniazid (INH)、rifampicin (RIF)、ethambutol (EMB)、streptomycin (SM)、rifabutin (RFB)、fluoroquinolones (FQs) (含 moxifloxacin、levofloxacin)、kanamycin (KM)、amikacin (AMK)、capreomycin (CM)、ethionamide (ETO)及 para-aminosalicylic acid (PAS)等。

(<u>__</u>) BACTECTM MGITTM 960 Pyrazinamide (PZA)

取 2 管 PZA 培養管各加入 0.8~mL BACTECTM MGITTM 960~PZA Supplement,加入 PZA 藥物溶液使種菌後藥物的濃度為 $100~\mu g/mL$ 。生長控制組試管不加任何藥物,由機器自動判讀結果。

三、分子抗藥性檢測

利用 Sanger 序列分析進行結核菌群分子抗藥性檢測,先以毛細管電泳確認 PCR 產物後進行定序。突變位點的判讀,係將測試菌株已完成定序的基因序列,與自 NCBI 資料庫下載 H37Rv 參考菌株與抗藥相關基因的序列,運用 Sequencher 及 MEGA 7 軟體進行比對。測試抗藥基因如下:INH (katG)、RMP (rpoB)、RFB (rpoB)、SM (rpsL)及 PAS (folC)。

四、基因分型

(一) 結核菌群間隔寡核酸分子分型法(spoligotyping)

利用結核菌群基因組之直接重複(direct repeat)片段,在不同菌株之間 寡核苷酸不同,設計 43 種不同探針,針對不同菌株間此寡核苷酸之不同 而進行菌株分型。以 PCR 方式,將寡核苷酸放大再與雜交膜上之探針 相互雜交,最後經由化學冷光試劑反應激發產光,於底片曝光後偵測而 完成分型。

(二) 結核菌群最佳化散置重複單元分子分型法(MIRU-VNTR)

利用結核菌群染色體上 MIRU 及 VNTR 之位點在不同菌株可能具有不同序列重複數的多型性,以多重聚合酶連鎖反應(multiplex PCR),將不同單元重複序列位點放大,依照估計出來的重複數,分別給予各位點一數字代碼。選用 10 個位點 MIRU(10)的單元重複數,組成一串數字代碼即為每個菌株的基因型。

(三) 全基因體序列分析(WGS)

利用酚及氯仿萃取去活化結核菌群的核酸,後續以 TruSeq Paired End DNA, Gel free 試劑套組製備樣本文庫,並以 Illumina MiSeq 為平臺進行 WGS。定序資料利用 BioNumerics 套裝軟體進行全基因體組裝後,以 unweighted pair group method with arithmetic mean (UPGMA)演算法分析 菌株間 SNP 差異數,再使用 MEGA 7 軟體繪出親緣關係樹。

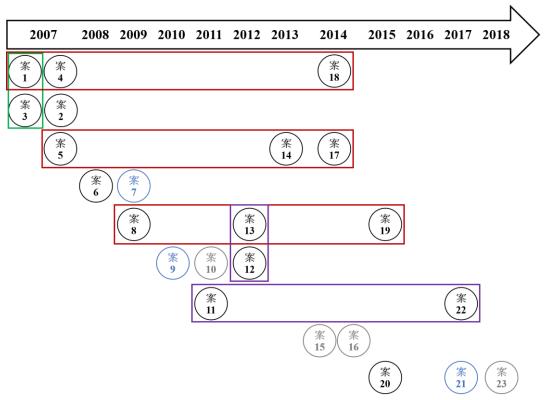
結核病聚集(cluster):指當有 2 (含)名以上確診結核病個案,且菌株間基因型別相同,但不一定具備人、時、地的關聯性。結核病群聚(outbreak):指當有 2 (含)名以上確診結核病個案,且菌株間基因型別相同,須具備人、時、地的關聯性,通報時間以間隔 1 年內(含)為原則,並具有流行病學關聯性。 五、疫調資料

個案基本資料、細菌學檢測結果及疫調資料,係由中央傳染病通報系統及 疾管署結核病追蹤管理系統資料庫取得。

結果

一、事件個案說明

2007 年,花蓮縣某村落陸續通報 5 名多重抗藥性結核病(multidrugresistant tuberculosis, MDR-TB)個案,初步疑似發生 MDR-TB 聚集事件。根據疫調資料,發現個案的活動地及時間皆高度重疊,具有流行病學關聯性,且傳統基因分型的結果皆為同一 Haarlem 3 型別,於是確認為群聚事件。時至2017 年,仍持續新增具流行病學相關的 MDR-TB 確診個案。此一 MDR-TB 聚集事件歷時 12 年,共包含 23 名 MDR-TB 個案。23 名個案平均年齡為 41.2歲;其中有 12 名(52.2%)男性;有 6 名(26.1%)胸部 X 光檢查結果為異常且有空洞(表一)。


表一、2007-2018年某結核病聚集事件個案特徵

個案編號	性別	年齡	胸部X光	塗片/培養			抗藥		
1	女	29	異常無空洞	+/+	INH	RMP	RFB	SM	
2	男	65	異常有空洞	+/+	INH	RMP	RFB	SM	
3	女	29	異常有空洞	+/+	INH	RMP	RFB	SM	PAS
4	男	41	異常有空洞	+/+	INH	RMP	RFB	SM	PAS
5	女	12	異常無空洞	+/+	INH	RMP	RFB	SM	
6	男	49	異常無空洞	+/+	INH	RMP	RFB	SM	
7	男	33	異常有空洞	+/+	INH	RMP	RFB	SM	PAS
8	男	34	異常無空洞	—/+s	INH	RMP	RFB	SM	
9	女	44	異常無空洞	+/+	INH	RMP	RFB	SM	
10	女	35	異常無空洞	—/+	INH	RMP	RFB	SM	
11	女	51	異常有空洞	+/+	INH	RMP	RFB	SM	
12	男	23	異常無空洞	+/+	INH	RMP	RFB	SM	
13	男	27	異常無空洞	+/+	INH	RMP	RFB	SM	
14	男	33	異常無空洞	+/+	INH	RMP	RFB	SM	
15	女	86	異常無空洞	+/+	INH	RMP	RFB		
16	女	48	異常有空洞	+/+	INH	RMP	RFB	SM	
17	女	53	異常無空洞	+/+	INH	RMP	RFB	SM	
18	男	20	異常無空洞	—/+	INH	RMP	RFB	SM	
19	男	34	異常無空洞	—/+	INH	RMP	RFB	SM	
20	女	55	異常無空洞	+/+	INH	RMP	RFB		
21	男	58	異常無空洞	—/+	INH	RMP	RFB	SM	
22	女	55	異常無空洞	—/+	INH	RMP	RFB	SM	
23	男	34	異常無空洞	—/+	INH	RMP	RFB	SM	

*+: 陽性; --: 陰性

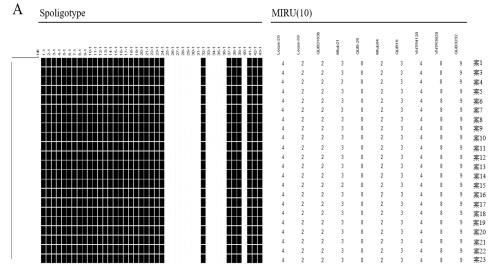
事件主要發生的花蓮縣某村落,居民皆互動頻繁,彼此關係非常密切。推測造成社區聚集的傳播途徑,可能包括:空間上,家戶內傳染或與個案於日常生活接觸(例如:商業行為或休閒娛樂等)有關;時序上,指標個案為2007年2月通報的案1,與案3(2007年5月)互為職場同事,與居住於同一家戶的案4(2007年5月)為叔嫂及案18(2015年1月)為母女關係。案5(2007年5月)與案14(2013年3月)為表兄妹,分別為案17(2014年10月)的姪女及姪子。案8(2009年9月)、案13(2012年2月)與案19(2015年4月)為表兄弟關係。案12(2012年2月)與案13(2012年2月)偶爾會至村落的卡拉OK場所;而案11(2011年6月)與案22(2017年11月)為酒伴,有共同飲酒的朋友圈(圖一)。

另外,來自於花蓮縣但非居住於同一村落的三名個案(案7、案9及案21)。 其中案9戶籍地設於該村落,推測過往可能與該事件村落居民,有直接或 間接的接觸。案21則有酗酒習慣,無法排除與該村落的個案有共同暴露的 可能,推測感染源與該村落有關。至於,居住於其他縣市的四名個案(案10、 案15、案16及案23),根據現有疫調資料,尚無法釐清個案關聯性;但若依 地緣性進行初判,則與主要聚集的個案可能無流行病學相關性(圖一)。

註:黑色圓為花蓮縣某村落個案,藍色圓為花蓮縣但非某村落個案,灰色圓為其他縣市個案; 紅色方框為親戚,綠色方框為同事,紫色方框為休閒娛樂的朋友。

圖一、2007-2018 年結核病聚集事件個案發病時序及關聯性

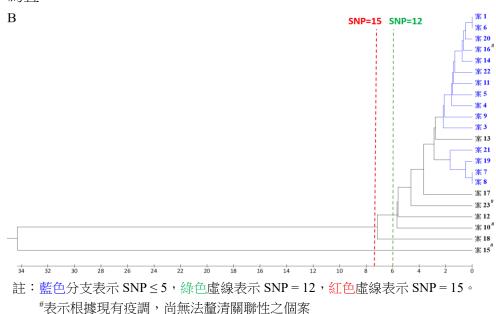
二、實驗室分析


(一) 細菌學結果

此 23 名個案的初次痰培養結果經鑑定皆為結核菌群。初次檢驗痰塗 片抗酸菌顯微鏡檢查及痰結核菌群培養結果,皆為陽性者有 16 名(70%),其中 11 名(69%)住於同一村落,顯示該村落具多名高傳染性個案,因而發展成為社區型聚集。藥物敏感性試驗結果顯示,皆 100%為 MDR-TB 個案(至少對 INH 及 RMP 抗藥)、100%對 RFB 抗藥及 91.3%對 SM 抗藥(除案 15 及案 20 外)。除案 3、案 4 及案 7 對 PAS 抗藥外,其他 20 名皆對其敏感。無對 FQs 及二線針劑抗藥,因此無超級抗藥結核病(extensively drug-resistant TB, XDR-TB)個案(表一)。分子抗藥性檢測結果顯示每位個案具有相同的 INH (katG S315T)、RMP (rpoB S450L)、RFB (rpoB S450L)、SM (rpsL K43R)及 PAS (folC S150C)抗藥相關基因突變位點。綜上,個案菌株間的傳統及分子藥敏檢測結果一致性高,初判可能具細菌學相關性。後續由於案 2 無法取得培養陽性的菌株,故僅有 22 名個案完成基因型分析。

(二) 基因型分析結果

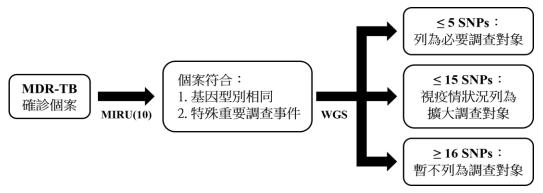
1. Spoligotype 及 MIRU


經比對國際 SpolDB4/SITVIT 資料庫,22 株菌株的 spoligotype 皆為 Harrlem 3型,其 shared type (ST)為 ST316。同時,以 MIRU(10)分型,基因型別皆為 4-2-2-3-8-2-3-4-8-9。後續與疾管署分枝桿菌實驗室以 MIRU(10)、spoligotype 及/或 RFLP 方法建置的菌株基因型資料庫進行比對,發現該 22 株菌株可歸屬於同一聚集(圖二 A)。

2. WGS

由 WGS 親緣性分析,發現 22 個案的菌株間共有 124 個 SNPs 差異數;菌株間 SNP 差異數最大為 69 及最小為 0 (圖二 B)。

國際上較普遍採用 5 或 12 個 SNPs 區分個案是否具有流行病學關聯性,此聚集的菌株若以≤ 5 SNPs 差異數為判定切點,則可將個案(藍色分支)匡列為同一社區群聚事件(圖二B);若以≤12 SNPs 差異數為判定切點,參考個案流病關聯性資料,確認 17 名個案屬於同一群聚;但是,由於居住於同一家戶的案 17 與案 1、案 3 互為親戚關係,會因為菌株的 SNP 差異數=14 被排除於同一群聚。因此,若以≤12 SNPs 差異數定義同一群聚,則會遺漏具明確流病關聯性的個案。進一步考量該聚集的個案所居住社區為結核病高風險地區、為 MDR-TB 聚集,且發病期程相差 12 年。因此,定義此聚集的 SNP 差異數閾值應為≤15 為官。



圖二、結核病聚集菌株基因分型結果: A. Spoligotype 及 MIRU-VNTR 基因分型 結果; B. 結核病聚集親緣關係樹

綜合上述結果,定義出符合臺灣應用的群聚 SNP 差異數判定閾值:≤5 SNPs 差異數閾值,為明確相關個案。≤15 SNPs 差異數閾值,為極可能相關個案。

三、臺灣結核菌群基因分型流程

雖然 WGS 在基因型監測上具相當實績,但是經考量資源、效益及時效性,建議更新結核病聚集基因分型流程(圖三),以 MIRU(10)為初級分型,若 MDR-TB 個案菌株基因型別相同,且為特殊重要調查事件,則進行 WGS 分析,進一步釐清親緣性。提供報告說明: ≤ 5 SNPs 為明確流病相關,為必要調查對象; ≤ 15 SNPs 為極可能相關,視疫情可擴大疫調對象; ≥ 16 SNPs 則依相關事證考慮後續作為。

圖三、結核菌群基因分型流程判別結核病聚集的實驗室分析流程

討論

近年來基因定序技術日新月異,使基因體學(genomics)蓬勃發展,已順利運用到精準醫療及疫病防治上,尤其是藉由 NGS 技術提供結核菌群的全基因體訊息,為結核病防治提供新的方向,對快速檢測工具、新藥物開發、抗藥性預測、基因型監測及聚集事件調查等有莫大助益。然而,WGS 分析雖於抗藥性預測日趨成熟,2018 年 WHO 也出版相關參考文件[9]。對於結核病傳播的實務運用則方興未艾,標準化更形複雜,尚缺乏全球共識[10]。本研究已確認聚集個案菌株親緣判別的SNP 切點數目,並訂定結核菌群 WGS 標準化的分析流程。

選擇已由 spoligotyping 及 MIRU-VNTR 判定的結核病聚集,因為方法學的設計個案間菌株的鑑別力相對受到限制。遂進階以 WGS 分析,發現案 15 與指標案 1 的菌株 SNP 差異數為 69,差異數過大而確定由原聚集排除。由德國的研究比較 IS6110 DNA 指紋(fingerprint)、MIRU-VNTR 及 WGS 三種方法預測個案間菌株的親緣關聯性,無例外以 WGS 的表現最佳,敏感度將近 100%、準確度為 81%,但是特異度則僅有 74%。因此,仍需要整合流行病學或疫調資料,共同研判是否確實為群聚事件才適當[11]。

其實,菌株親緣性的分析,最適合的 SNP 差異數切點,會受到不同因素影響而變動。現有研究顯示:以結核病盛行率而言,在低盛行率的區域以 SNP 差異數≤5 作為群聚感染判定,中盛行率則以 SNP 差異數≤12 作為切點,而高盛行率的地區(國家)則需要用 20 個 SNP 以上的差異數[12]。再者,菌株的演化率也會影響 SNP 差異數切點,文獻指出每年每個基因組的遺傳變異率為 0.3-0.5 SNPs,會造成基因體序列變異的累積。估計3年時最大遺傳變異數為5個 SNP,10年時最大遺傳變異數為10個 SNP [13],故亦須納入考量個案先後的發病時程。由於治療用藥會造成菌株因為壓力而產生抗藥性,已知有些抗藥基因的特定突變與結核病傳播密切相關[14]。另外,宿主與環境因素亦皆會影響 SNP 差異數切點之訂定。本研究藉由 WGS 探討一件歷時12年的 MDR-TB 聚集,定義臺灣結核菌株的親緣性,除可以供匡列可能的聚集,以監測未明的可能結核病傳播事件外,更提供群聚事件調查的精準判定依據:SNP 差異數≤5為明確相關個案,及≤15為

極可能相關個案。另,透過精確聚集關聯初判,再導入疑似群聚疫情調查中,可縮小調查範圍,避免不必要的資源浪費及人力負擔。

緣此,由於臺灣抗藥性結核病以新案居多、聚集菌株持續增長及若干群聚事件延續多年,個案發病時間不一及空間遷移等因素,造成疫調難度高,傳播鏈無法釐清。疾管署實驗室優先執行 MDR-TB 個案的 WGS 分析。並自 2021 年 1 月開始,疾管署參考實驗室更新疑似群聚事件的基因分型流程,先以 MIRU(10)為初級分型,相同基因型聚集將視關鍵性,接續提供 WGS 進階分型報告。WGS 以更高解析特性來區別菌株間親緣關聯性,建構更精確的傳播網絡,優化結核病聚集監測及群聚溯源,以有效確認感染源及控制疾病的傳播。然而,儘管 WGS 技術的蓬勃發展,其所需成本理應持續下降,但仍然相對昂貴,成為 WGS 是否能被廣泛應用的限制因素之一。另外,實驗室軟、硬體的維護及升級成本,生物資訊相關人才養成等亦須納入考量。未來期能利用 WGS 分析取代結核病傳統抗藥性檢驗,以提供精準個人化醫療;最佳化群聚的匡列,以釐清潛在尚未揭露的傳播或群聚等。相信廣於運用 WGS 新科技工具於防疫,有利於邁向消除結核病終極目標。

參考文獻

- 1. World Health Organization. Global tuberculosis report 2020. Available at: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf.
- 2. 衛生福利部疾病管制署:臺灣結核病防治年報 2019。取自:https://www.cdc.gov.tw/File/Get/eohpjs5F-9obJG4sMlmHBw。
- 3. Jagielski T, van Ingen J, Rastogi N, et al. Current Methods in the Molecular Typing of *Mycobacterium tuberculosis* and Other Mycobacteria. Biomed Res Int 2014; 2014: 645802.
- 4. van der Werf MJ, Ködmön C. Whole-Genome Sequencing as Tool for Investigating International Tuberculosis Outbreaks: A Systematic Review. Front Public Health 2019; 7: 87.
- 5. Meehan CJ, Moris P, Kohl TA, et al. The relationship between transmission time and clustering methods in *Mycobacterium tuberculosis* epidemiology. EBioMedicine 2018; 37: 410–6.
- 6. Walker TM, Ip CL, Harrell RH, et al. Whole-genome sequencing to delineate *Mycobacterium tuberculosis* outbreaks: a retrospective observational study. Lancet Infect Dis 2013; 13(2): 137–46.
- 7. Lalor MK, Casali N, Walker TM, et al. The use of whole-genome sequencing in cluster investigation of a multidrug-resistant tuberculosis outbreak. Eur Respir J 2018; 51(6): 1702313.
- 8. 衛生福利部疾病管制署: 傳染病標準檢驗方法手冊。取自: https://www.cdc.gov.tw/File/Get/Icq-IqB57bJpe-Mv3QDdDQ。

- 9. World Health Organization. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in *Mycobacterium tuberculosis* complex: technical guide. Available at: https://apps.who.int/iris/bitstream/handle/10665/274443/WHO-CDS-TB-2018.19-eng.pdf?sequence=1&is Allowed=y.
- 10. Hatherell HA, Colijn C, Stagg HR, et al. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 2016; 14: 21.
- 11. Diel R, Kohl TA, Maurer FP, et al. Accuracy of whole-genome sequencing to determine recent tuberculosis transmission: an 11-year population-based study in Hamburg, Germany. Eur Respir J 2019; 54: 1901154.
- 12. Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of *Mycobacterium tuberculosis:* current standards and open issues. Nat Rev Microbiol 2019; 17: 533–45.
- 13. Ford CB, Lin PL, Chase MR, et al. Use of whole genome sequencing to estimate the mutation rate of *Mycobacterium tuberculosis* during latent infection. Nat Genet 2011; 43: 482–6.
- 14. Nikolayevskyy V, Niemann S, Anthony R, et al. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect 2019; 25: 1377–82.